Bài viết hướng dẫn chi tiết cách xem trực tuyến và cách tải PDF sách lớp 6 Kết nối tri thức đầy đủ các môn học Toán, Ngữ văn, Tiếng Anh, Khoa học tự nhiên, Lịch Sử, Địa Lí, Giáo dục công dân, Hoạt động trải nghiệm, Công nghệ, Tin học, Âm nhạc, Mĩ thuật, Giáo dục thể chất. Qua bài viết này các bạn dễ dàng xem được trọn bộ sách giáo khoa, sách bài tập, sách giáo viên lớp 6 Kết nối tri thức. Mời các bạn đón xem:
Bài viết hướng dẫn chi tiết cách xem trực tuyến và cách tải PDF sách lớp 6 Kết nối tri thức đầy đủ các môn học Toán, Ngữ văn, Tiếng Anh, Khoa học tự nhiên, Lịch Sử, Địa Lí, Giáo dục công dân, Hoạt động trải nghiệm, Công nghệ, Tin học, Âm nhạc, Mĩ thuật, Giáo dục thể chất. Qua bài viết này các bạn dễ dàng xem được trọn bộ sách giáo khoa, sách bài tập, sách giáo viên lớp 6 Kết nối tri thức. Mời các bạn đón xem:
Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài hỗ trợ đăng ký : 084 283 45 85
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
Giải bài tập lớp 11 Kết nối tri thức khác
cos (a – b) = cosa cosb + sina sinb
cos (a + b) = cosa cosb – sina sinb
sin (a – b) = sina cosb – cosa sinb
sin (a + b) = sina cosb + cosa sinb
tan (a-b) = tana−tanb1+tanatanb
tan (a+b) = tana+tanb1-tanatanb
(giả thiết các biểu thức đều có nghĩa).
Ví dụ: Không dùng máy tính, hãy tính sin và tan 15°.
= -sinπcosπ6 - cosπsinπ6 = -0.32 - (-1).12 = 12.
tan15o = tan(60o - 45o) = tan60°−tan45°1+tan60°.tan45°
cos2a = cos2a – sin2a = 2cos2 – 1 = 1 – 2sin2a
Chú ý: Từ công thức nhân đôi suy ra công thức hạ bậc:
Ví dụ: Biết sinα = 25 và 0 < α < π2 . Tính sin2α ; cos2α và tan2α.
sin2α + cos2α = 1 ⇒ cos2α = 1 – sin2α = 1-= 2125
Ta có: sin2α = 2sinα cosα = 2.25.215=42125
cos2α = 1 – 2sin2α = 1 - 2.= 1725
3. Công thức biến đổi tích thành tổng
cosacosb = 12[cos(a-b) + cos(a+b)]
sinasinb = 12[cos(a-b) - cos(a+b)]
sinacosb = 12[sin(a-b) + sin(a+b)].
Ví dụ: Tính giá trị của biểu thức
4. Công thức biến đổi tổng thành tích
Ví dụ: ChoA = cosπ17.cos4π17 và B = cos3π17 + cos5π17. Không dùng máy tính, tính giá trị của biểu thức AB.
B = cos3π17 + cos5π17 = 2.cos3π17+5π172.cos3π17−5π172
= 2.cos4π17.cos = 2cos4π17.cosπ17.
Suy ra AB=cosπ17.cos4π17cos3π17+cos5π17=cosπ17.cos4π172cos4π17.cosπ17=12 .